Lecture T

Stable Matching

What is Algorithm Design?

What are some complex problems we may write a computer program to solve?
% Computing similarity between DNA sequences

«» Routing packets on the Internet

«*» Scheduling final exams at a college

% Assign medical residuals to hospitals

% Find all occurrences of a phrase in a large collection of documents

< Finding the smallest number of coffee shops that can be built in the US
such that everyone is within 20 minutes of a coffee shop

DNA Sequence Similarity

%* Input: two n-length strings s; and s,

< s, = AGGCTACC

% s, = CAGGCTAC

«» Output: minimum number of insertions/deletions to transform s, into s,

< Algorithm: ???

«* Even if the objective is precisely defined, we are often not ready to start coding right away!

What is Algorithm Design?

Formulate the problem precisely
Design an algorithm

Prove the algorithm is correct

0w~

Analyze its running time

This is an iterative process!

* Sometimes we'll redesign an algorithm to prove that it is correct

Stable Matching

Matching applicants to medical residency programs:
** m applicants
K/

% m slots at hospitals

< Applicants have preferences over hospitals and vice versa

What is a good way to match?
< Matching should be stable; participates have no incentive to switch
*» One way to identify a good matching!

O

%* Gale-Shapley algorithm

Stable Matching

Work on developing and applying a solution to this
problem won the 2012 Nobel Prize in Economics P

Lloyd Shapley developed Stable matching theory *‘
and the Gale-Shapley algorithm N S 45

Alvin Roth applied Gale-Shapley to matching
residents with hospitals, students with schools, and
organ doners with patients

Problem Formulation

< Input:
** nresidents
** n hospitals
< preference lists
*» Output:
% A stable matching
< A matching is an assignment of residents to hospitals
< a set M of resident-hospital pairs, each resident/hospital in exactly one pair

«» Goal: output a stable matching

Stable Matching

What does stable even mean? e WW
a “d HEH| _=_ |BHB X
% ‘"participates have no incentive to switch" 968 [T |55
«*» Matching has no unstable pair
L]
b = @
An unstable pair is an unmatched pair that o o
prefer each other to their assigned matches
L]
c wofd 888 8gs| z
Can we determine is a matching is stable just 9688 [THH |59

from the matching?

Stable Matching

Tnospiia
What does stable even mean? e el @) o
a “d HEH| _=_ |BHB 1
% ‘"participates have no incentive to switch" 968 [T |55
«*» Matching has no unstable pair
[]
b gs] © [omg] 2
An unstable pair is an unmatched pair that i T
prefer each other to their assigned matches
L]
C wofd 888 sgs| 3
Can we determine is a matching is stable just 9688 [THH |59

from the matching?

+*» No, we need to know their preferences!

Exercise 1

@
aa 1 2 3 1: b a c] @) fre
a oe8| — (o8] 4
b: 2 1 3 22 a b c 6|0 38| fFFF| [ee
c: 1 2 3 3: a b
®
b w4 99998992
988| [TTl |B88
o)
C oo 9592@25593

BE8 W BB8

Exercise 1

®
a1 2 3 1. b a c “] (@) e
_ BBB| — |B88| 4
b: 2 1 3 22 a b c a o 388| ff77 |oee
c: 1 2 3 3: a b
L]
b s © fams| 2
. BBB| Ty (888
Which pair is an unstable pair in this matching? i
. (a2
(a.2) o
ii. (b1) C Mo 'a'ié'a'a’a”e’ 3
BBB| 77 (888
iii. (b,3)

iVv. None of the above

Exercise 1

®
a1 2 3 1. b a c “] (@) e
_ BBB| — |B88| 4
b: 2 1 3 22 a b c a o 388| ff77 |oee
c: 1 2 3 3: a b
L]
b s © fams| 2
. BBB| Ty (888
Which pair is an unstable pair in this matching? i
. (a2
(a.2) o
ii. (b,1) c W 'a'ié'a'a’a”e’ 3
BBB| 77 (888
iii. (b,3)

iVv. None of the above

Example: Universal preferences

@
az 1 2 1. a b a Ui %%%1
b: 1 2 2: a b |

b e s © [amg] 2
BEBWBBB

% M =1{(a1),(b,2)}? stable

% M ={(a,2),(b 1)}?not stable

Exercise 2: Inconsistent preferences

®
a: 1 2 1: b a a G o8| 2 fooe| 4
gB8H m HEHB
b: 2 1 2: a b
b Y oos| © fom| 2
. . . BEB W HBHB
Which matching is stable?

L M={(a2),(b1)}
ii. M={(a1),(,2)}
lii. Neither

Iv. Both

Exercise 2: Inconsistent preferences

®
a: 1 2 1: b a a G 0| © foge|
gB8H m HEHB
b: 2 1 2: a b
b Y oos| © fom| 2
. . . BEB W HBHB
Which matching is stable?

L. M={(a?2),(0 1}

i. M={(a1),(,2)}

i There can be multiple stable
Il Neither matchings for a given problem!

iv. Both

Designing an Algorithm

@
a: 1 2 3 1: a b] “ =l @ = 1
b: 2 1 3 2: b ¢ 388| T |eee
c: 1 3 2 3: b ¢
. -HOSP!TAL
b 4 oos| © fom| 2
HBH W BEA
% Let's try building M incrementally
C o

Designing an Algorithm

@
a: 1 2 3 1: a b . “ sea| 2 [oeg] 4
b: 2 1 3 2: b ¢ 988| FTT |BeB
c: 1 3 2 3: b ¢
®
b N
HBH W BEA
% Let's try building M incrementally
«» Unmatched hospitals take turns offering to Py
students and propose in order of preference c Wb o T3
88| ?ﬁ AE8

«» Students take first offer then "trade up" if
they receive better offer

Propose-and-Reject (Gale-Shapley) Algorithm

Initially all residents and hospitals are free
while some hospital is free and hasn't made offers to every resident do
Choose a hospital h
Let r be the highest ranked resident to whom h has no offered
if r is free then
r and h become matched
else if r is matched to h’ but prefers h to h’ then
h' becomes unmatched
h and r become matched
else
r rejects h and h remains free

Running the Propose-and-Reject algorithm

®
aa 1 2 3 1. a b a o @ [
b: 2 1 3 2: b ¢ 988| FTT |BeB
cc 1 3 2 3: b ¢
L
b L e © ol 2
BEBWEBB
@
c Wl aes| 2 faas) 3
BBBWBBB

Running the Propose-and-Reject algorithm

®
aa 1 2 3 1: a b . sea| 2 [oeg] 4
b: 2 1 3 2: b C BEB m BEB
cc 1 3 2 3: b ¢
@
b gs] © [omg] 2
BEB BEB
% 1 matches with ¢
* 2 matches with a @ Tl
o LW e e
% 3 proposes to a but is rejected ¢ e e ool 3

% 3 matches with b

Stability

Does the algorithm return a stable matching?

% Suppose (r, h) is an unstable pair
#* ris matched to h' but prefers hto k'
% his matched to ' but prefers r to '
*» Did h offerto r? Yes, by F2, since h offered to ' who is ranked lower

O

% Did r accept the offer from h? Maybe initially, but » must eventually reject h for another
hospital, and, by F1, r prefers final college h’ to h (-«)

Analyzing the Algorithm

Goal: prove that the algorithm always returns a stable matching

Observations:

« (F1) Residents accept their first offer, after which they stay matched and only improve
their match during the algorithm

+ (F2) Hospitals propose to residents sequentially in order of preferences

Termination

Does the algorithm terminate?
*» In each round, some hospital proposes to a new resident in their list (by F2)
«» Each hospital makes at most n proposals

*» Then, there are at most n? proposals

% Implies there are at most n? rounds

Validity

Does the algorithm return a valid matching?

¢ For contradiction, suppose that resident and hospital h are unmatched at
the end of the algorithm

« Implies r was never matched during the algorithm (by F1)

*» But h proposed to every student (by F2 and termination)

**» When h proposed to r, she was unmatched but must have rejected h (—«)

Validity

Does the algorithm return a valid matching?

¢ For contradiction, suppose that resident and hospital h are unmatched at
the end of the algorithm

« Implies r was never matched during the algorithm (by F1)
*» But h proposed to every student (by F2 and termination)

**» When h proposed to r, she was unmatched but must have rejected h (—«)

Key idea: proof by contradiction

Symmetry

What if we had the residents propose rather than the hospitals?

Symmetry

What if we had the residents propose rather than the hospitals?

*» May obtain a different stable matching

«» When hospitals propose, we best satisfy the hospitals' preferences

< When residents propose, we best satisfy the residents' preferences

Next Time

% Begin looking at tools for analyzing algorithms, e.g., Big-O notation

	Slide 1: Lecture 1
	Slide 2: What is Algorithm Design?
	Slide 3: DNA Sequence Similarity
	Slide 4: What is Algorithm Design?
	Slide 5: Stable Matching
	Slide 6: Stable Matching
	Slide 7: Problem Formulation
	Slide 8: Stable Matching
	Slide 9: Stable Matching
	Slide 10: Exercise 1
	Slide 11: Exercise 1
	Slide 12: Exercise 1
	Slide 13: Example: Universal preferences
	Slide 14: Exercise 2: Inconsistent preferences
	Slide 15: Exercise 2: Inconsistent preferences
	Slide 16: Designing an Algorithm
	Slide 17: Designing an Algorithm
	Slide 18: Propose-and-Reject (Gale-Shapley) Algorithm
	Slide 19: Running the Propose-and-Reject algorithm
	Slide 20: Running the Propose-and-Reject algorithm
	Slide 21: Stability
	Slide 22: Analyzing the Algorithm
	Slide 23: Termination
	Slide 24: Validity
	Slide 25: Validity
	Slide 26: Symmetry
	Slide 27: Symmetry
	Slide 28: Next Time

